Learning a Mahalanobis Metric from Equivalence Constraints
نویسندگان
چکیده
Many learning algorithms use a metric defined over the input space as a principal tool, and their performance critically depends on the quality of this metric. We address the problem of learning metrics using side-information in the form of equivalence constraints. Unlike labels, we demonstrate that this type of side-information can sometimes be automatically obtained without the need of human intervention. We show how such side-information can be used to modify the representation of the data, leading to improved clustering and classification. Specifically, we present the Relevant Component Analysis (RCA) algorithm, which is a simple and efficient algorithm for learning a Mahalanobis metric. We show that RCA is the solution of an interesting optimization problem, founded on an information theoretic basis. If dimensionality reduction is allowed within RCA, we show that it is optimally accomplished by a version of Fisher’s linear discriminant that uses constraints. Moreover, under certain Gaussian assumptions, RCA can be viewed as a Maximum Likelihood estimation of the within class covariance matrix. We conclude with extensive empirical evaluations of RCA, showing its advantage over alternative methods.
منابع مشابه
LEIBNIZ CENTER FOR RESEARCH IN COMPUTER SCIENCE TECHNICAL REPORT 2003-34 Learning a Mahalanobis Metric with Side Information
Many learning algorithms use a metric defined over the input space as a principal tool, and their performance critically depends on the quality of this metric. We address the problem of learning metrics using side-information in the form of equivalence constraints. Unlike labels, we demonstrate that this type of side-information can sometimes be automatically obtained without the need of human ...
متن کاملSemi-Supervised Clustering via Learnt Codeword Distances
This paper focuses on semi-supervised clustering, where the goal is to cluster a set of data-points given a set of similar/dissimilar examples. These examples provide instance-level equivalence/in-equivalence constraints (e.g., similar pairs belong to the same cluster while dissimilar pairs belong to different clusters), but in order to aid final clustering we must propagate them to feature-spa...
متن کاملLearning Distance Functions: Algorithms and Applications
This thesis presents research in the field of distance learning. Distance functions are extensively used in various application domains and also serve as an important building block in many types of algorithms. Despite their abundance, until recently only canonical distance functions such as the Euclidean distance have been used, or alternatively various application specific distance functions ...
متن کاملConstraint selection in metric learning
A number of machine learning algorithms are using a metric, or a distance, in order to compare individuals. The Euclidean distance is usually employed, but it may be more efficient to learn a parametric distance such as Mahalanobis metric. Learning such a metric is a hot topic since more than ten years now, and a number of methods have been proposed to efficiently learn it. However, the nature ...
متن کاملLearning Distance Functions using Equivalence Relations
We address the problem of learning distance metrics using side-information in the form of groups of "similar" points. We propose to use the RCA algorithm, which is a simple and efficient algorithm for learning a full ranked Mahalanobis metric (Shental et al., 2002). We first show that RCA obtains the solution to an interesting optimization problem, founded on an information theoretic basis. If ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 6 شماره
صفحات -
تاریخ انتشار 2005